Does Ancillary Data about Ancillary Data Help Treat Missing Responses in Ancillary Data?
Abstract:
Consumer-file marketing companies collect and sell customer’s demographic and behavioral information wherever they can: through loyalty cards, website visits, social media posts, etc. These ancillary data are tremendously valuable and have a variety of applications in the field of television and digital media measurement that include targeting households or individuals for marketing campaigns, adjusting for nonresponse bias, and projecting estimates from a sample to an underlying universe. These potential advantages, however, depend on the completeness of the information contained in the data. Today, most applications involving the use of ancillary data exclude incomplete records from the substantive analysis. Exclusion as a missing data handling strategy has been known to result in inaccurate conclusions depending on the nature of the mechanism assumed to have generated the missing data. In this paper, we demonstrate a model-based alternative to exclusion, called multiple imputation (MI), which is used to fill in the missing values. A correctly specified imputation model preserves important characteristics of the data (e.g., variances, correlations, interactions) and can mitigate any bias resulting from exclusion-based missing data handling strategies. Our paper demonstrates MI in the context of a substantive analysis of the relationship between a completely observed measure of the number of advertisement impressions served across television networks and an incomplete measure of the number of children per household. We include likely correlates of the suspected cause of the missing data in the imputation model to evaluate whether their inclusion improves the quality of the imputed values. These correlates are measures pulled from a second, more completely observed, ancillary dataset containing television and digital media audience measurements. This paper concludes with a discussion of our findings, which are likely to have important implications for the use of ancillary data in television and digital media audience measurement.
Recommended Citation:
Craft, M., Raghunath, A., & Rao, K. (2023). Does Ancillary Data about Ancillary Data Help Treat Missing Responses in Ancillary Data? American Association for Public Opinion Research, Philadelphia, PA.
Attached Documents/Links:
- AAPOR 2023 Program
- For a copy of this presentation, please send me a comment with your email address in the box below or an email to kumarrons at gmail dot com.